USGA Sponsored

实用研究

通过土壤耕作管理沙基果岭中 的有机物质

如何管理果岭中的有机物堆积? 阿肯色大学的研究员为我们提供了重要观点。

作者: 乔斯・兰德雷斯、道格・卡切尔和麦克・里查德森

们经常会发现,新铺设的 现,新铺设的 匍匐翦股颖草 皮在定植后的几年内表现极 佳,但随后便开始走下坡路。出现这一现象的原因, 可能是根系层土壤的物理性 能随时间而发生改变,特别 是接近地表的部分(有机物 质累积的位置)。实践显示,在一个根据 USGA 标 准修建的球场中,根系层 土壤有机物质累积如果超

过 4%-5%,水渗透能力就会下降,根系层土壤的空气流动能力 也会减弱。^{2,3}

最近,研究人员已开发出可有效 减少有机物质累积的耕作技术,可 保持良好的根系层土壤物理性能。 这些技术包括:深度垂直切割以及 曝气叉更密集的岩心曝气。事实证 明,与传统的岩心曝气处理方法相 比,垂直切割设备(比如 Graden GS04)可深入刺穿果岭地表的有机 物质层,为深层土壤提供通风道。 最近在果岭岩心曝气技术方面另外 一个趋势,就是使用间距更密集的 曝气叉,可通过安装组件对老式通 风设备进行改装,或者使用曝气叉 间距更密的打孔机。

按照 USGA 标准建造的果岭,即 使使用时间较久,其土壤截面整体 仍然会保持良好的物理性能,有机

尽管垂直切割处理(左)可以清除更多地表有机质,但进行岩心曝 气处理的地块(右),其恢复速度明显更快。

物质累积的近地表区域除外。在 这样的情况下,曝气叉的长度必须能够充分穿透有机物质对基层 并移出土芯。如果曝气叉过长,则会将过多的沙子带到地表。清 除沙子会增加人工成本,填充通 风孔所需要的沙子也会增加。

这项研究的目标是,通过比较 不同深度垂直打孔和岩心曝气处 理,判断各种方法从沙基果岭中 清除地表有机物质的效果。

耕作实验方法

研究人员从 2003 年春季起, 在阿 肯色大学研究和推广中心(位于 阿肯色州费耶特维尔)进行了为 期两年的实验。实验对象为根据 USGA 果岭建造方法修建的一年 果岭, 草种为 Penn G-2 匍匐翦 股颖。^{1,4} 试验中使用的耕作处理方 法为:在每个实验年的春季 和秋季,使用 Graden 竖直 切割机或 Toro 果岭打孔机进 行处理。垂直切割处理的深 度为1英寸,以确保彻底穿 透草根层,且采用了不同宽 度的切割齿(1毫米、2毫 米和3毫米)。岩心曝气处 理包括:组合不同的曝气叉 间距(1.25 x 1.50 或 2 x 2.5 英寸)、曝气叉直径(0.25 或 0.50 英寸)以及曝气叉插

入深度(1.5 或 2 英寸)。每种处理 方法分别在 5 x 20 英尺的地块中使 用,且重复四次。

有机物质清除效果

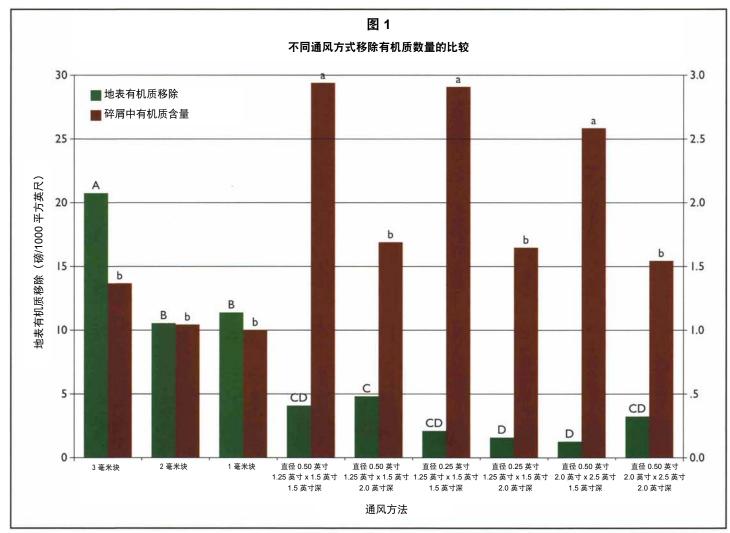
与任何一种核心曝气处理方法相 比,所有垂直切割方法去除的地表 有机质数量更多(见图一)。3毫 米垂直切割处理法清除的有机物质 数量,是每一种核心曝气处理法 的4倍以上。1毫米和2毫米垂直 切割处理方法,在有机物质清除方 面没有明显的差别,但这两种方法 清除的有机质仅为3毫米处理方法 的一半。因此,如果沙基果岭的根 系层土壤有机物质含量非常高,球 场应该考虑采用深度垂直切割法, 清除根系层土壤表面附近多余的有 机质。从岩心曝气处理方法可以看 出,打孔直径越大、越密集、插入 越深,清除的有机物质就越多。

尽管在清除根系层土壤大量有机 质方面, 岩心曝气的效果不如垂直 切割,但岩心曝气能够完全插透有 机质层、且不会将过多沙子带到地 表, 且效果更为显著, 特别是用较 短曝气叉进行处理时更是如此。

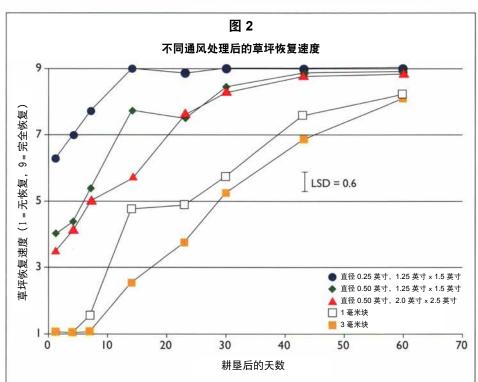
草皮恢复和质量

在耕作处理后对草皮恢复进行了评 估,结果概述如图2所示。 与垂直 切割处理相比, 岩心曝气处理所产 生的耕作通道恢复速度更快。垂直 切割处理的恢复时间,为耕作后近 60 天, 差不多是岩心曝气草坪恢复 时间的两倍。由于很多垂直切割 通道已经部分封闭,因此很难向 里面填充沙子,也增加了地表平 整的难度。

岩心曝气处理所产生的通风孔, 更不易出现崩塌现象,可以更充 分地进行铺沙填埋, 地表可以更平 整,恢复速度也更快。在所有岩 心曝气处理的地块中,草皮通风 孔的铺沙数量,要多于耕作过程 中挖出的碎屑数量。但在垂直切 割的草坪中, 铺沙数量仅为挖出 碎屑数量的 70%。


在岩心曝气处理中,草皮的恢复 时间主要受曝气叉直径的影响。使 用 0.25 英寸直径曝气叉的草坪恢 复时间为14天,大约是0.50英寸 曝气叉处理草坪恢复时间的一半。 在本研究中,曝气叉的深度或间 距都不影响草皮的恢复时间。因 此, 草坪管理者可以在大面积的 果岭地表使用更密集的曝气叉进 行处理.这样做也不会影响其恢 复时间。这种处理方法中,浅的

Graden GS04 垂直 切割机可以刺 穿果岭根系 层土壤的 有机质层. 形成通道。



将耕作处理所 带出的碎屑收 集起来. 然后 对草坪进行 铺沙,直到将 挖出的通道 填满。

清除的地表有机质,以及不同耕作方法对 耕作碎屑中有机质比例的影响。数据收集 日期:2003 年 5 月 21 日,收集地点: 阿肯色州费耶特维尔。在评估数据的柱形 图中,字母相同的柱之间没有明显差别。

> 耕作处理对草坪耕作恢复的 影响。数据收集日期: 2003 年 9 月至 11 月, 收集地点:阿肯色州费耶特 维尔。误差柱代表在相同评 估日期中,各处理之间最小 的显著差异值。

曝气叉要优于深的曝气叉。因为 浅的曝气叉可减少带到地表的碎 屑数量,同时其清除与的有机物数 量也与深的曝气叉相同。在进行三 组耕作处理后(实验开始后14个 月),结果显示,深度垂直切割在 清除根系层土壤表层有机质方面的 效果最为显著(见图3)。所有密 集叉距的岩心曝气处理组,在清 除地表有机质数量方面均低于对 照组,但这三个处理的结果差别 不大,不构成统计学上的显著 差异。

在清除果岭根系层土壤有机质方 面,垂直切割处理法要比岩心曝气 处理法更深入、更有效。但垂直切 割法会将过多的碎屑带到地表,恢 复得也更加缓慢。因此,当需要立 刻清除大量有机质、且恢复时间不 是第一考量时,更适合采用深度垂 直切割法。对于耕作后须尽快恢复 较高品质的果岭,可采用更密集叉 距的岩心曝气法进行常规地表有机 质维护。

参考文献

1. Landreth, J. W. 2005. Cultivation techniques to maximize the efficiency of organic matter removal from sand-based putting greens. M.S. thesis. Univ. of Arkansas, Fayetteville.


2. Murphy, J. W., T.R.O. Field, and M. J. Hickey. 1993. Age development in sand-based turf *Int. Tuif. Soc. J.* 7: 464-468

3. Neylan, J. 1994. Sand profiles and their long-term performance. *Golf & Sports Tuif Aus.* Aug: 22-27.

4. USGA. 1993. USGA recommendations for putting green construction. *USGA Green Section Record*. 31(2): 1-3.

编者注: 在 USGA 草坪草和环境研 究在线中可查看本文完整版 (http://usgatero.msu.edu/v06/n19.pdf).

乔斯・兰德雷斯,研究技术员
道格・卡切尔,博士,副教授;
麦克・里查德森博士,教授;
阿肯色州费耶特维尔阿肯色大学
园艺系。

耕作处理对根系层土壤 1 英寸深地表有机物质含量的影响。数据收集时间:2004 年 6 月 21 日,即第三组处理进行后 2 个月。字母相同的柱之间 的处理方式没有明显差别。