Rolling during golf tournaments is a common practice to maximize green speed and improve putting quality.

The Ups and Downs of Rolling Putting Greens

A practical guide for developing a rolling program.

by CHRIS HARTWIGER

HISTORY has an uncanny ability to repeat itself. Nowhere is this more apparent than in the turfgrass management practice of rolling putting greens. Once an important tool in a superintendent's management program in the early 1900s, the practice of rolling has endured periods of popularity and disdain. Nevertheless, rolling putting greens has received considerable attention during the early 1990s, and its merits are being debated at many golf courses.

The attitudes toward rolling vary widely today. Some golf course superintendents view rolling as a means of improving putting quality, while others believe rolling is just another stress that makes putting green management just that much more difficult. While the debate over rolling continues, a large portion of the golf course management industry is interested in revisiting this old maintenance practice and learning about its potential for use today.

This article will serve as a guide to developing an agronomically appropriate greens rolling program through careful consideration of several factors. To accomplish this, a brief history of rolling and the advantages and disadvantages associated with greens rolling will be reviewed. Next, research results on the effects of rolling putting greens will be presented in order to understand appropriate frequencies of rolling putting greens. Finally, the different types of rollers available today will be reviewed, and methods to compare different rollers will be offered.

Rolling History

Historically, superintendents used rolling as a supplement to mowing to improve the smoothness of putting
greens. The mowing equipment, turfgrass varieties, and cultural practices for putting greens during the early 1900s were much less sophisticated than those available today, and the practice of rolling provided an immediate improvement in putting conditions. As golf course management evolved, the attitudes about rolling changed too. New bentgrass varieties and improved mowers allowed superintendents to make major improvements in putting quality. Also, turfgrass scientists discovered the negative effects of compaction on turfgrass growth and development. Needless to say, many rollers were relegated to the back corner of the equipment storage facility.

Several events have occurred during the last 20 to 30 years that have made superintendents reconsider the practice of rolling putting greens. The first is the proliferation of high-sand-content putting greens, which are less susceptible to compaction. Also, many equipment manufacturers have introduced new lightweight rollers designed specifically to provide an efficient and reliable means of rolling greens. A final consideration is the increasing pressure being placed on superintendents to provide faster and smoother putting surfaces.

Rolling Perceptions

With the renewed interest in rolling, it is important to understand the potential advantages and disadvantages associated with an appropriate putting green rolling program. Under reasonable mowing heights, rolling will increase green speed. Accompanying the benefit of green speed is an improvement in smoothness and uniformity. After rolling, improved smoothness is readily apparent, especially to golfers. Some superintendents roll greens in conjunction with mowing, while others roll as a substitute for mowing. This approach reduces the stress associated with mowing and can smooth spike marks, remove dew, and provide an immediate improvement in smoothness.

While golf's Scottish ancestors considered inconsistent greens a challenge, the demands of today's players dictate a consistent surface from the first green through the 18th green. Rolling all 18 greens can improve the uniformity and consistency of speed among greens.

Aerification is a practice that's essential for high-quality putting greens, but unfortunately golfers have a poor understanding of this practice. Some superintendents are using rolling as a way to minimize the surface disruption caused by aerification and improve post-aerification putting quality for golfers.

Equipment used to maintain turfgrass has limitations, and rollers are no different. Over the years, several areas of concern with rolling have arisen. Turf scientists have demonstrated that compaction hinders turfgrass growth, and some fear that rolling increases compaction. Along with this change, some believe that rolling may cause a decrease in the infiltration rate that could hinder oxygen and water availability to the roots. Also, there is a concern that rolling may result in wear injury or bruising of the turfgrass on the putting green.

Until recently, researchers had not investigated these concerns, and the result was a cautious approach to rolling by superintendents. For example, some use rollers prior to a tournament or special event and use it sparingly at other times. Two major forces are driving this conservative approach. The first is a lack of research on the effects of rolling. Additionally, superintendents do not want to raise golfers' expectations without knowing more about the negative effects of rolling.

The Effects of Rolling

If the practice of rolling is to find its place in the future of putting green management programs, several important issues need to be resolved. First, the practice of rolling appears to increase green speed, but both the immediate effects on green speed and the residual effects on green speed are not understood completely. Also, turf managers are aware of the negative effects associated with compaction, but no one has determined if the new lightweight rollers compact putting green soils. Finally, examples of rollers injuring turf through abrasion have been observed, but little is known about what conditions and frequencies of rolling can cause this injury.

In 1992, I identified these questions and initiated a research project at North Carolina State University under the guidance of Drs. Joe DiPaola, Charles Peacock, Leon Lucas, and Bill Cassel. The goal of this project was to evaluate the effects of lightweight rolling on green speed, compaction, and turf quality. This experiment was conducted on bentgrass greens constructed with a USGA specification rootzone and a native soil rootzone. The initial study was conducted for 10 weeks in the summer of 1993 and was repeated in the summer of 1994. Rolling frequencies on the bentgrass test plots were either 0, 1, 4, or 7 times per week.

Outlined below is a brief summary of the results of this research.

Green Speed – The experiments performed on green speed revealed two important points. First, green speed measurements taken one to two hours after rolling were 10 to 15 percent faster than an untreated area. Also, a residual effect was observed. Approximately 48
hours after rolling, the plots receiving the rolling treatment had green speeds approximately 2 to 4 percent faster than untreated plots.

Bulk Density — Bulk density measurements were used to assess the level of compaction of both the USGA and native soil rootzones. On the USGA specification green, no change in compaction was detected in either of the treatment years for any of the rolling frequencies. In essence, rolling as much as seven times per week for ten weeks did not produce a measurable change in bulk density.

On the native soil green, mixed results were observed. In the 1993 experiment, rolling frequencies of four or seven times per week produced an increase in bulk density. No change in bulk density was noted for the plots receiving zero or one rolling treatment per week. In the second year, no change in bulk density was detected regardless of rolling frequency.

Turf Quality — Results of the study indicated that, depending on the rolling frequency, turfgrass thinning and decreased turf quality can result from rolling. At a frequency of rolling one time per week, no decrease in turf quality was evident when compared to an untreated plot. However, rolling frequencies of four or seven times per week did result in turfgrass thinning after approximately three to four weeks of rolling treatments. When thinning did appear, it began in isolated areas and increased as treatments continued. Rolling four or seven times per week did reduce turf quality, but only if practiced for several consecutive weeks. Therefore, superintendents can roll at low frequencies for extended periods of time and at high frequencies for short durations.

Types of Rollers

There are three primary types of rollers available for putting greens. The drum roller is the oldest type of roller in use today. Drum rollers have been used for many years and they vary in size, shape, and weight. Typically, these units were constructed by a creative golf course mechanic. During operation, drum rollers are pulled behind a utility vehicle.

The second type of roller is called a triplex attachment. These rollers are attachments substituted for the reels on a triplex mower. The actual operation of these units is virtually identical to mowing a green with a triplex mower. As a result, little operator training is needed for effective use. A difference between these units and the other two categories is that tires of the triplex, and not the rollers themselves, are the last part of the unit to impact the turf.

Dedicated lightweight rollers are the third category of roller available today. Research at North Carolina State University demonstrated that rolling once a week did not decrease turf quality. Turf quality declined after rolling the turf four or seven times per week after a period of three to five weeks.

Research at North Carolina State University demonstrated that rolling once a week did not decrease turf quality. Turf quality declined after rolling the turf four or seven times per week after a period of three to five weeks.

Turf Quality: Native Green 1993

<table>
<thead>
<tr>
<th>Turf Quality, 1-9 (9 = Best)</th>
<th>Rolling Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Consecutive Treatment Days
putting green, there is some amount of depression into the putting surface, which changes the area of contact. To complicate matters, the area of contact is not linear but circular, and the weight of the unit is not distributed equally at all surface points. The amount of depression into a green can vary with thatch levels, mowing height, soil moisture, rootzone construction, and other factors. As a result, PSI can be extremely variable and difficult to determine. In determining PSI, it is unlikely that each manufacturer has used the same assumptions, leaving the superintendent to try and compare apples to oranges.

Another popular method of comparing rollers is to measure pounds per lateral inch. The PLI equation is calculated by dividing the weight of a unit by the lateral inches of all the rollers on the unit. For example, a roller weighing 525 pounds with three rollers of 36 inches each would have the following PLI measurement: $525 \div (36 \times 3) = 8$ PLI. While this method is certainly easy to compute, it does not take into account the diameter of the rollers. Theoretically, two different models each could weigh 525 pounds with three rollers 36 inches long, but with different roller diameters. In theory, the model with the larger roller diameter would have a larger area of surface contact and would affect the turf differently. By not taking roller diameter into account, the PLI equation is limited and is not a good method to compare rollers.

Introducing the Roll Factor

While neither of the two methods above appears to be effective in comparing rollers, all hope should not be lost. There is a formula called the roll factor that can be used effectively to compare different pieces of turf equipment, including putting green rollers. As we have noted above, the important factors to consider when evaluating rollers are the weight of the unit, the length of the rollers, and the diameter of the rollers. The formula for the roll factor takes all of these factors into account as noted in the following formula: Roll Factor = Weight of Unit ÷ (Diameter of Rollers x Length of Rollers).

To illustrate how this formula works, consider the following example:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Roller A</th>
<th>Roller B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roller Weight</td>
<td>525 lbs.</td>
<td>750 lbs.</td>
</tr>
<tr>
<td>Number of Rollers</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Length of Rollers</td>
<td>36 in.</td>
<td>36 in.</td>
</tr>
<tr>
<td>Diameter of Rollers</td>
<td>5 in.</td>
<td>8 in.</td>
</tr>
<tr>
<td>Roll Factor Formula</td>
<td>$525 \div (36 \times 3)$</td>
<td>$750 \div (36 \times 3)$</td>
</tr>
<tr>
<td>Roll Factor Value</td>
<td>0.97</td>
<td>0.87</td>
</tr>
</tbody>
</table>

In the example, Roller B has a roll factor value of 0.87, while Roller A has a roll factor value of 0.97. Based on the higher roll factor value, Roller A has a greater potential for compaction than Roller B. Remember that the roll factor does not offer a measure of force per unit area, but is a method to rank the relative potential for compaction of two or more rollers. This formula is easy to use and all the information needed is readily available. By using the roll factor, a superintendent has an excellent means to compare rollers and other turf equipment used on the golf course.

The “Do’s and Don’ts” of Rolling

Now that we have reviewed the effects of rolling on the putting surface, the types of rollers available, and a method to compare rollers, some final thoughts on developing a rolling program are in order.

Realize that a roller is a tool and not a quick fix or a substitute for a good agronomic program. As demonstrated through research, proper frequencies of rolling can improve the smoothness and speed of a green. Generally, low rates of rolling, such as once or twice a week during non-stress periods, can be practiced without detriment to the turf. Higher rates of rolling can be practiced for short durations only. When injury occurs, it is gradual and does not happen overnight. However, high frequencies of rolling, such as four or seven times per week for an extended period, may result in diminished turf quality.

Rolling does not always have to be used as a means to improve existing green speed. During the off-season, when clipping production is minimal, rolling greens is an excellent means to remove dew and provide a putting surface comparable to a freshly mowed green. Rolling also can be used after aerification as a way to minimize the surface disruption associated with this practice.

The education of golfers and course officials is essential to any rolling program. Spoiling golfers with continual rolling may help create a standard that no one can sustain. It is important to make a distinction between the proper and improper use of a roller. There are times when rolling can be practiced and time when rolling is not advised. The more these groups understand the principles of a proper rolling program, the more successful the superintendent will be.

It is not known whether the practice of rolling will continue to follow a roller coaster of popularity. What is known is that superintendents now have more information about the effects of rolling and a wider choice of rolling equipment. This information can be used to develop an agronomically appropriate greens rolling program that will benefit those who enjoy golf.

CHRIS HARTWIGER is an agronomist in the USGA Green Section's Southeastern and Florida Regions.