Required Maintenance Versus Available Labor Are You Adequately Staffed?

by MARTIN MOORE

Superintendent, Birnam Wood Golf Club, California

HOW MUCH maintenance is required on a golf course? Obviously the amount varies with each course, but each course should have a formula for determining what represents an acceptable level of conditioning.

Every superintendent knows the necessary frequency for each maintenance procedure, and he also knows that the quality is diminished if the frequency is disrupted. The question then becomes, "Are there enough staff members to keep up regular maintenance and still deal effectively with additional or emergency requirements that cannot be anticipated?" If an irrigation mainline breaks, do the fairways go uncut? If high winds cut through the course, do you have the manpower to clean up the debris and still run your regular operations?

It is unrealistic to suggest that staff sizes be increased to the point where manpower is available for any unforeseen emergency. Nevertheless, in many cases available labor is not sufficient to accomplish basic maintenance and still keep up with the wishes of the membership. When you reach the point where required routine maintenance cannot be performed consistently, the quality of any golf course will suffer.

Because of this problem, the golf course superintendent should review periodically what types of maintenance he is required to perform, how long it takes, and how many man-hours are

TABLE 1

Basic Required Maintenance vs. Available Labor Analysis
To determine the extent of our man-hour deficiency, a time/task analysis was prepared (see Table 2). The total number of man-hours required to perform every necessary maintenance procedure was calculated. The composite results are as follows:

	Apr./Oct.	Nov./Mar.
Required weekly maintenance	509	380
Required periodic maintenance/weekly average	114	73
Required emergency \& project maintenance/weekly average	50	24
Preparation \& breaktime hours	75	75
Benefit hours/weekly average	51	51
Total weekly man-hours required	799	603
Total man-hours available \qquad (includes all staff directly assigned to golf course)	600	600
Deficit man-hours	(199)	(3)

Given that 799 man-hours are required to maintain the course weekly, April through October, and we have only 600 man-hours available, we are therefore maintaining the course at 75 percent of the required minimum level.

TABLE 2
Time/Task Analysis - Required Weekly Maintenance

available to get it done. Much the same as he determines how many ounces of pesticide are required to control an agricultural pest, the superintendent can determine how many people are required to perform each maintenance procedure. Just because an individual golf course has always had a 15 -man crew doesn't mean that is enough to keep up with constantly increasing maintenance demands. As use increases, and with it revenues, so must the size of the maintenance staff.

Consider the number of man-hours available to be similar to a checking account. In other words, if you have 15 employees multiplied by 40 hours a week, you will have 600 man-hours. If overtime is a regular part of your operation, add this to the total. Once we have quantified the number of manhours available, we must accurately
quantify the total number of maintenance and associated work hours expected in the same period.

How do we accurately figure how much time it takes to do everything in our operation? In my case, the daily maintenance records for the past few years were reviewed. In a very short time, patterns developed, and based upon historical performance, I was able to come up with some pretty accurate projections for every area. The maintenance hour-consuming items were broken into five groups (Table 1):

1. Mandatory weekly maintenance.
2. Mandatory periodic maintenance, weekly average.
3. Mandatory emergency and/or project maintenance, weekly average.
4. Preparation and break time hours, weekly average.
5. Benefit hours, weekly average.

The next step was to split the operation into two basic time periods daylight savings time (30 weeks) and standard time (22 weeks) - to allow for the variance in required maintenance during these periods.

TO ARRIVE at the numbers in Table 1, a time/task analysis sheet (Tables 2,3 , and 4) was devised for required weekly maintenance, additional required maintenance, and required emergency and project maintenance. You will also note in Table 1 the daily work preparation and break time amounted to nearly two full-time employees per week. While these hours may not relate to the hours on the course, it provides a good outline for approaching the board, green committee, or ownership concerning the needs of your particular situation.

TABLE 3
Time/Task Analysis - Additional Required Maintenance

	Hours	Apr./ Oct. No. of Times	Hour Total	Nov./ Mar. No. of Times	Hour Total	Explanation
Green verticut	3	15	45	5	15	$1 \mathrm{man} / 3$ hours
Green topdress	8	10	80	5	40	2 men/4 hours
Trim apron/ verticut	8	7	56	3	24	1 man/8 hours
Green aerification	268	3	804	1	268	See below
Tee aerification	84	2	168	2	168	3 men/4 days
Fairway aerification	140	2	280	1	140	4 men/5 days
Fairway verticut	7	10	70	1	7	$1 \mathrm{man} / 7$ hours
Trap edging	180	4	720	2	360	$\begin{aligned} & 6 \text { men } \times 6 \text { hours } \\ & \times 5 \text { days } \end{aligned}$
Weedeaters	80	4	400	2	160	$\begin{aligned} & 4 \text { men } \times 4 \text { hours } \\ & \times 5 \text { days } \end{aligned}$
Green edging	80	7	560	3	240	$\begin{aligned} & 4 \text { men } \times 4 \text { hours } \\ & \times 5 \text { days } \end{aligned}$
Tee fertilization	4	4	16	5	20	1 man/4 hours
Green fertilization	4	7	28	5	20	1 man/4 hours
Fairway fertilization	8	2	16	2	16	2 men/4 hours
Rough fertilization	8	2	16	2	16	2 men/4 hours
Rough aerification	21	2	42	1	21	$1 \mathrm{man} / 3$ days
Edge plaques	4	7	28	2	8	1 man/4 hours
Course flower beds	28	2	56	1	28	2 men/2 days
Load dumpster	1	28	28	20	20	1 man/ 1 hour $4 \times /$ month
RTC court squeegee	4			10	40	2 men/2 hours
			3,413		1,611	10x/year

Green aerification -2 men $\times 31 / 2$ days $=49$
Clean plugs -2 men $\times 31 / 2$ days $=49$
Topdress -8 men $\times 1$ hour per green $\times 20=160$
Seed amendments -.5 hour per green $\times 20=10$
TOTAL: 268

After deciding what must be done, how long it takes, and how often it must be done, it is simple to determine whether or not the maintenance department is staffed to handle the expected maintenance effectively. In this particular case, the course was operating at a deficit level of five employees per week from April through October. What does it mean when you are operating with a regular deficit in man-hours? It means that you must constantly adjust and choose which maintenance procedures to omit periodically or regularly. The result is a situation where the nuances of quality begin to
disappear. In other words, every area listed directly affects the quality of day-to-day playing conditions. Shaggy turf, partially raked bunkers, unswept areas, unfilled divots, puffy fairway and tee surfaces, leaky sprinklers, inconsistent rough, and weed encroachment are the result of deficit maintenance. Sooner or later, maintenance is performed in each of these areas, but not with consistent frequency, which is directly related to consistent quality or the lack of it.

It is not the intention of this article to have the golf course superintendent immediately begin pounding on the
doors of our managers or green committee chairmen demanding more staff members. It is recommended, however, that you take a hard look at your operations, and accurately assess labor needs based on historically acceptable levels of maintenance. Before we can upgrade our operations, we must be able to accurately communicate our needs to our employers. If we can accurately quantify the labor hours required for maintenance procedures, we can legitimately request additional staff when we are required to perform additional maintenance.

TABLE 4 Time/Task Analysis - Required Emergency/Project Maintenance						
	Hours	Apr./ Oct. No. of Times	Hour Total	Nov./ Mar. No. of Times	Hour Total	Explanation
Mainline repair	28	7	196	4	112	2 men $\times 2$ days
Grade road	4	7	28	5	20	$1 \mathrm{man} / 4$ hours
Branch clean-up	4	7	28	5	20	2 men/2 hours
Tree clean-up	28			1	28	4 men/2 days
Tree planting	8	2	16	1	8	2 men/4 hours
Trap renovation	140	1	140			4 men $\times 1$ week
Painting	147			1	147	4 men $\times 1$ week +
In-house construction	105	1				See below
Drainage	140	1	140	1	140	4 men $\times 2$ weeks per year
Herbicide	105	1	105			1 man/3 weeks
Rough seeding	35	1	35			$1 \mathrm{man} / 1$ week
Cart path program	315	1	315			See below
Apron scalping	84	1	84			2 men/ 6 days
O. B. maintenance	42			1	42	2 men $\times 3$ days
Sodding	140	1	140			4 men/ 1 week
Brush clearance	280	1	280			4 men $\times 2$ weeks
			1,507		517	
Cart path program - Remove asphalt and grade - 1 man/3 weeks Add soil to edges -2 men/ 1 week Seed sod - 2 men $/ 2$ weeks Total: 315 hours						
$\begin{aligned} \text { In-house construction }- & \text { Tees }-1 \text { man } \times 3 \text { weeks }=105 \\ & \text { Brush clearance }-4 \text { men } \times 2 \text { weeks }=280 \\ & \text { Starter house }-2 \text { men } / 2 \text { days }=28 \end{aligned}$						
$\begin{array}{r} \text { Benefit hours - Sick pay }-8 \text { hours } \times 5 \text { days } \times 15 \text { men }=600 \\ \text { Vacation }-8 \text { hours } \times 10 \text { days } \times 15 \text { men }=1,200 \\ \text { Holiday }-8 \text { hours } \times 7 \text { days } \times 15 \text { men }=\boxed{840} \end{array}$						
2,640 per year $=51$ hours per week						

